

### Interim impact and ongoing treatment requirements for achieving HCV elimination in Georgia

Dr. Josephine Walker, Professor Peter Vickerman

University of Bristol, UK

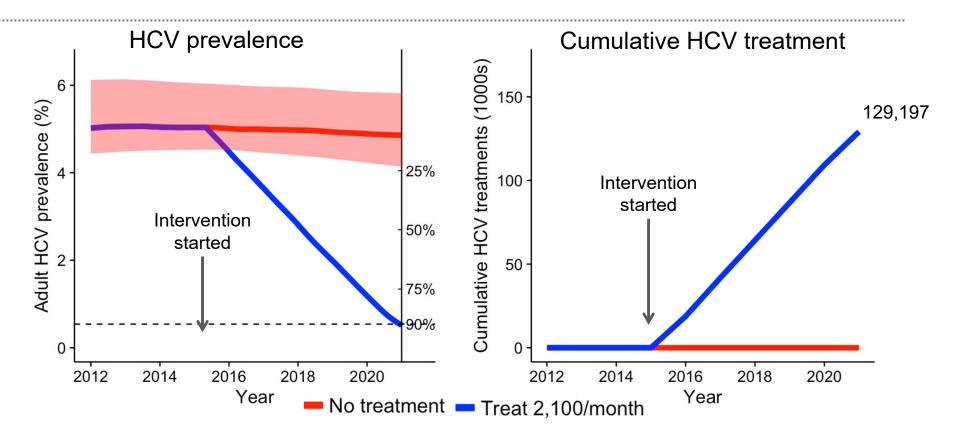


#### Introduction

- Developed a dynamic HCV transmission model:
  - Capture current and historic epidemic,
  - Include role of people who inject drugs (PWID)

- Main aim of modelling:
  - Calculate interim impact of treatments done so far
  - Evaluate treatment needed to reach elimination

#### Important assumptions to remember!


- Model calibrated to changing PWID epidemic:
  - Reduced number of young PWID in recent IBBAs
  - Decreasing HCV prevalence in young PWID, and
  - Very high prevalence of HCV in middle aged men, but much lower in young men and women
  - > Considerable but decreasing past IDU epidemic
- Used estimated SVR rate:
  - Assume proportion of those that were LTFU are cured
- Assumed equal treatment of PWID
  - Little data on this tested in sensitivity analysis

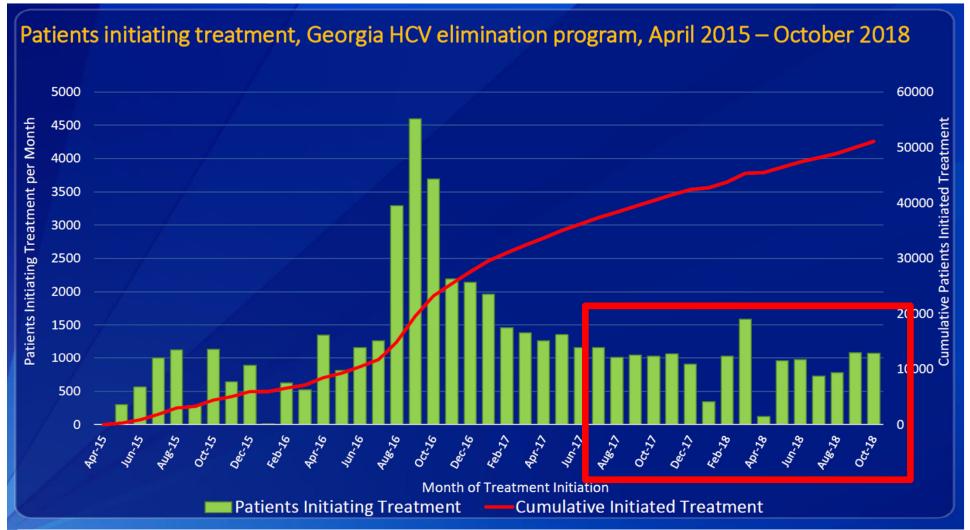


# What rate of treatment was necessary from start of the program to reach 90% reduction in HCV prevalence by 2020?



#### Initial treatment targets

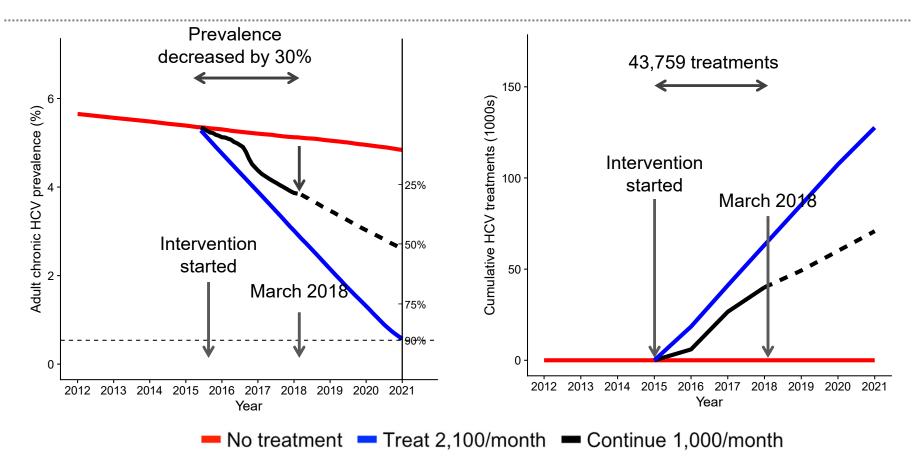



- Model suggested 2,100 treatments needed per month to reach target
  - 129,000 treatments needed overall



#### How are we doing so far?




#### Treatments undertaken so far?



- Total of 51,000 treatments undertaken.
- Average 1,188 treatments/month, with ~1000/month over last 16 months



#### Interim impact done till March 2018?

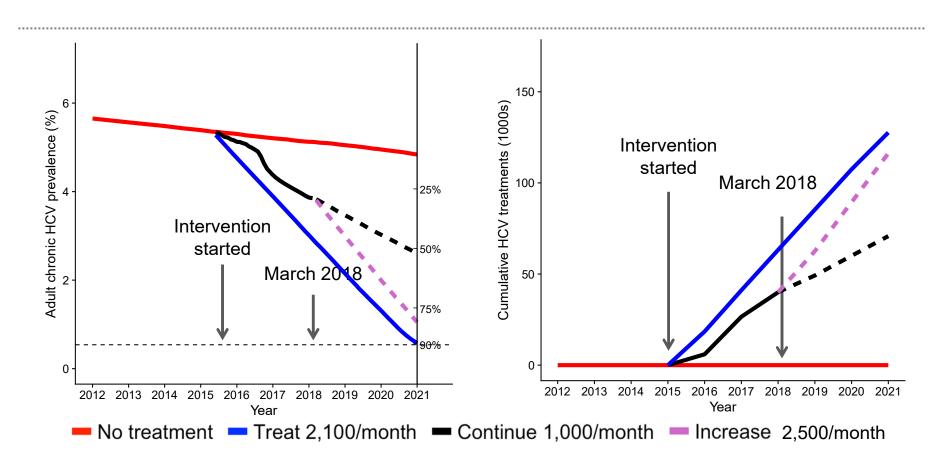


- Continue 1000/mth halve incidence and prevalence by 2020
- 90% decrease by end of 2025



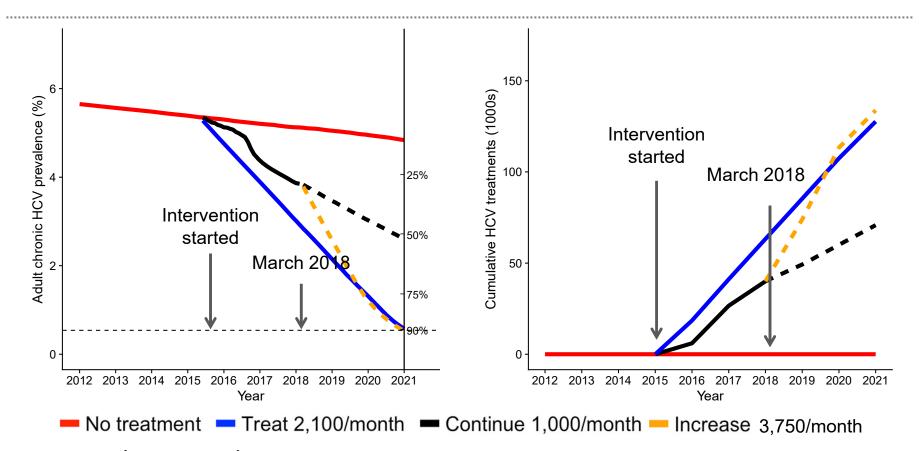
#### Impact up to end 2018

PV [2]1


- If assume continues to end of 2018 as suggested by data:
  - Prevalence and incidence reduced by about 35%
  - Prevented 3100 (1150-7082) new infections
  - Prevented 228 (74-386) HCV-related deaths
- Impact accumulates if follow over next 15 years
  - Prevented infections increase 9-fold
  - Prevented deaths increase 23-fold

51072 if can have updated estimates to october 2018 Peter Vickerman, 11/26/2018 PV [2]1




## How can a 90% reduction HCV in prevalence be reached by 2020?

#### How much treatment was needed from March 2018?



- Increase treatment to 2,500/month 80% reduction in prevalence by 2020
- 90% reduction by mid-2022

#### How much treatment was needed from March 2018?



- To reach 90% reduction:
  - From March 2018 needed to increase treatment 4-fold to 3,750/month
  - From November 2018 need to increase treatment 6-fold to 5,500/month

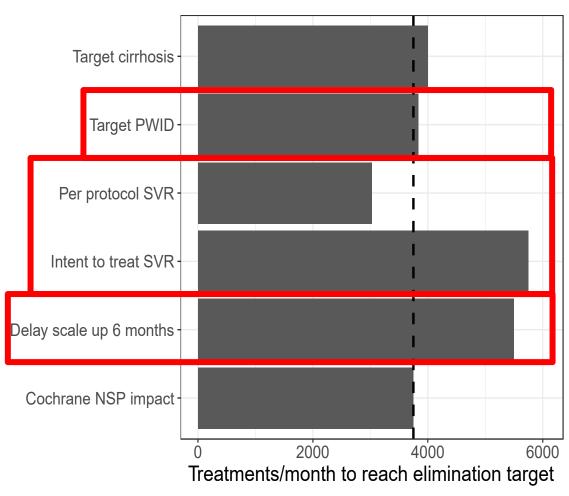


### Sensitivity analysis

#### Required treatment rates to achieve target by 2020

 Maximising retention and SVR rate is important

Per-protocol SVR rate Reduce treat need by 25%


Intent to treat SVR rate Increase treat need by 50%

 Delaying scale-up - big effect

Need to ensure PWID are treated, but:

 Targeting PWID not important, if

Being treated equitably



#### Implications: when will we reach 90% reduction?

- Treatments already achieved impact prevalence and incidence reduced by 35%,
- Current treatment rate 1000 per month
  - Reach target 2025
- Increase treatment rate:
  - 1500 per mth 2024
  - 2000 per mth 2022
  - 5500 per mth 2020
- Could also improve SVR rate reduce LTFU:
  - Per protocol SVR and 2000 per mth –2021



#### Acknowledgements

#### This project was funded by the CDC Foundation

Bristol: Hannah Fraser, Aaron Lim

CDC/CDCF: Liesl Hagan, Shaun Shadaker, Muazzam Nasrullah, Francisco Averhoff,

Juliette Morgan, Tatia Kuchuloria, Lia Gvinjilia

Alternative Georgia: David Otiashvili, Irma Kirtadze

Curatio International: Ivdity Chikovani

NCDC: David Baliashvili, Alexander Asatiani, Irma Khonelidze, Ketevan Stvilia,

Amiran Gamkrelidze

Neolab: Maia Butsashvili

Ministry of Labor Health and Social Affairs: Valeri Kvaratskhelia

Infectious Diseases, AIDS and Clinical Immunology Research Center: Malvina

Aladashvili, Tengiz Tsertsvadze

UC San Diego: Natasha K Martin

SUNY Albany: Mark H. Kuniholm



#### **Key Points and Discussion**

- Treatments have already achieved impact prevalence reduced by 30%, infections and deaths averted
- Reaching 90-95-95 treatment target will achieve 80% reduction in prevalence and incidence by 2020
- Treatment rate must be scaled up for reaching target by end of 2020
  - to 5500 per month from now
- Targeting treatment to PWID not essential, just need to ensure they have good access
- What are implications for program can't assume plans stay the same!



#### Next steps

- 1. Determine cost-effectiveness of different piloted strategies:
  - Prison, PWID interventions,
  - Which strategies are most efficient for increasing diagnosis and linkage to treatment?
  - We know treatment needs to scale up how do we do it?
- 2. Use modelling to evaluate final impact of program:
  - Did intervention have expected impact, and if not then why not?
  - What can other countries learn from Georgia to implement efficient treatment programs?



- Dynamic **HCV transmission and progression** model stratified by age, PWID status, infection and liver disease status
- Model calibrated to detailed data:
  - General population demography
  - 2015 National sero-survey HCV prevalence data by age and gender
  - PWID survey data on age distribution and HCV prevalence since 1997
- Incorporate scale-up of harm reduction interventions
- Model includes uncertainty in data used to parameterise and calibrate model.
- Captures evolving nature of HCV transmission and epidemic